Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper considers network protection games for a heterogeneous network system with N nodes against cyber-attackers of two different types of intentions. The first type tries to maximize damage based on the value of each net-worked node, while the second type only aims at successful infiltration. A defender, by applying defensive resources to networked nodes, can decrease those nodes' vulnerabilities. Meanwhile, the defender needs to balance the cost of using defensive resources and potential security benefits. Existing literature shows that, in a Nash equilibrium, the defender should adopt different resource allocation strategies against different types of attackers. However, it could be difficult for the defender to know the type of incoming cyber-attackers. A Bayesian game is investigated considering the case that the defender is uncertain about the attacker's type. We demonstrate that the Bayesian equilibrium defensive resource allocation strategy is a mixture of the Nash equilibrium strategies from the games against the two types of attackers separately.more » « less
-
Considered is a network of parallel wireless channels in which individual parties are engaged in secret communication under the protection of cooperative jamming. A strategic eavesdropper selects the most vulnerable channels to attack. Existing works usually suggest the defender allocate limited cooperative jamming power to various channels. However, it usually requires some strong assumptions and complex computation to find such an optimal power control policy. This paper proposes a probabilistic cooperative jamming scheme such that the defender focuses on protecting randomly selected channels. Two different cases regarding each channel’s eavesdropping capacity are discussed. The first case studies the general scenario where each channel has different eavesdropping capacity. The second case analyzes an extreme scenario where all channels have the same eavesdropping capacity. Two non-zero-sum Nash games model the competition between the network defender and an eavesdropper in each case. Furthermore, considering the case that the defender does not know the eavesdropper’s channel state information (CSI) leads to a Bayesian game. For all three games, we derive conditions for the existence of a unique Nash equilibrium (NE), and obtain the equilibria and the value functions in closed form.more » « less
-
null (Ed.)This paper considers network protection games against different types of attackers for a heterogeneous network system with N units. A defender, by applying resources to networked units, can decrease the units’ vulnerabilities. At the same time, the defender needs to take into account the cost of using defense resources. Two non-zero sum Nash games against two different types of attackers are studied. The first type tries to maximize damage based on the value of security assets related to networked units, while the second type aims at infiltrating the network. The analyses show that there exists a cut-off index determining the set of units that will be protected in the equilibrium strategies of the first game, while either all units or none will be covered in the equilibria of the second game. An application of the network protection game to secure wireless communication networks is presented.more » « less
An official website of the United States government
